4.7 Article

Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 56, 期 415, 页码 1269-1276

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eri111

关键词

alternative oxidase; chlorophyll fluorescence; drought; photoprotection; respiration; wheat

向作者/读者索取更多资源

The aim of this study was to explore the role of the mitochondrial alternative oxidase (AOX) in the protection of photosynthesis during drought in wheat leaves. The relative water contents of water-replete and drought-exposed wheat plants were 97.2 +/- 0.3 and 75 +/- 2, respectively. Drought increased the amount of leaf AOX protein and also enhanced the rate of AOX-dependent O-2 uptake by the respiratory electron transport chain. The amount of the reduced, active form of the AOX protein was specifically increased by drought. The AOX inhibitor salicylhydroxamic acid (1 mM; SHAM) inhibited 70% of AOX activity in vivo in both water-replete and drought-exposed plants. Plants treated with SHAM were then exposed to low (100), high (350), or excess light (800 mu mol photons m(-2) s(-1)) for 90 min. SHAM did not modify chlorophyll a fluorescence quenching parameters in water-replete controls after any of these treatments. However, while the maximal quantum yield of photosystem II (PSII) electron transport (F-v/F-m) was not affected by SHAM, the immediate quantum yield of PSII electron transport (Phi(PSII)) and photochemical quenching (qP) were gradually reduced by increasing irradiance in SHAM-treated drought-exposed plants, the decrease being most pronounced at the highest irradiance. Non-photochemical quenching (NPQ) reached near maximum levels in plants subjected to drought at high irradiance. However, a combination of drought and low light caused an intermediate increase in NPQ, which attained higher values when AOX was inhibited. Taken together, these results show that up-regulation of the respiratory AOX pathway protects the photosynthetic electron transport chain from the harmful effects of excess light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据