4.5 Article

Sulfur chemistry with time-varying oxygen abundance during Solar System formation

期刊

ICARUS
卷 175, 期 1, 页码 1-14

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2004.10.012

关键词

solar nebulae; meteorites; cosmochemistry; Jupiter

向作者/读者索取更多资源

Chemical models of solar nebula chemistry are presented which show the influence of progressive water depletion from the inner solar nebula. The main focus of this work is the equilibrium distribution of S resulting from this process. Under canonical solar nebula conditions, H2S is the dominant S-bearing species in the gas phase and troilite (FeS) is the primary reservoir for S after condensation. As water vapor diffuses out to its condensation front, the equilibrium distribution of S changes significantly. With the removal of water vapor, SiS becomes the most abundant S-bearing gas and MgS and CaS compete with Fes as the main sulfide reservoir. These results allow us to argue that some of the minerals in the enstatite chondrites formed through the heterogeneities associated with the nebular ice condensation front, and that the sulfur abundance in Jupiter reflects a depletion in H2S that is the result of inner nebula sulfur chemistry under varying oxygen abundance. (c) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据