4.6 Article

Second-generation quantum-well sensors for room-temperature scanning Hall probe microscopy

期刊

JOURNAL OF APPLIED PHYSICS
卷 97, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1887828

关键词

-

向作者/读者索取更多资源

Scanning Hall probe microscopy is a noninvasive magnetic imaging technique with potential for having a major impact in the data storage industry if high-resolution Hall effect sensors can be developed with sufficiently low-noise figures at room temperature. To meet this requirement, we have developed a series of second-generation quantum-well Hall probes whereby the careful design of an AlGaAs/InGaAs/GaAs pseudomorphic heterostructure, chip layout, metal interconnects, and passivation layers has allowed a dramatic reduction of low-frequency noise sources. In addition, the Johnson noise-limited minimum detectable fields of these sensors are more than an order of magnitude lower than those used in early microscopes. The key figures-of-merit of the sensors are presented and their performance illustrated in an imaging study of a yttrium-iron-garnet thin film at room temperature. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据