4.5 Article

Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: Application to a crystalline aquifer of Southern India

期刊

APPLIED GEOCHEMISTRY
卷 29, 期 -, 页码 102-116

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.apgeochem.2012.11.001

关键词

-

资金

  1. French National Research Agency (ANR) through the VMC programme (project MOHINI) [ANR-07-VULN-08]

向作者/读者索取更多资源

Overexploitation of crystalline aquifers in a semi-arid climate leads to a degradation of water quality, with the main processes responsible for the observed salt loads probably being irrigation return flow (IRF) and a high evaporation rate. The present study has focused on modelling the F- accumulation caused by IRF below rice paddy fields in the small endorheic Maheshwaram watershed (Andhra Pradesh, Southern India). The transient simulation was performed with a 1D reactive transport PHREEQC column and took into account IRF evaporation, kinetically controlled mineral dissolution/precipitation, ion adsorption on Fe hydroxides, and mixing with fresh groundwater. The results revealed the role of cationic exchange capacity (CEC) in Ca/Na exchange and calcite precipitation, both favouring a decrease of the Ca2+ activity that prevents fluorite precipitation. Iron hydroxide precipitation offers a not inconsiderable adsorption capacity for F- immobilization. The principal sources of F- are fluorapatite dissolution and, to a lesser extent, allanite and biotite dissolution. Anthropogenic sources of F-, such as fertilizers, are probably very limited. After simulating an entire dry-season irrigation cycle (120 days), the results are in good agreement with the observed overall increase of Cl- in the Maheshwaram groundwater. The model enables one to decipher the processes responsible for water-resource degradation through progressive salinization. It shows that F- enrichment of the groundwater is likely to continue in the future if groundwater overexploitation is not controlled. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据