4.7 Article

Translocation of double-strand DNA through a silicon oxide nanopore

期刊

PHYSICAL REVIEW E
卷 71, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.71.051903

关键词

-

向作者/读者索取更多资源

We report double-strand DNA translocation experiments using silicon oxide nanopores with a diameter of about 10 nm. By monitoring the conductance of a voltage-biased pore, we detect molecules with a length ranging from 6557 to 48 500 base pairs. We find that the molecules can pass the pore both in a straight linear fashion and in a folded state. Experiments on circular DNA further support this picture. We sort the molecular events according to their folding state and estimate the folding position. As a proof-of-principle experiment, we show that a nanopore can be used to distinguish the lengths of DNA fragments present in a mixture. These experiments pave the way for quantitative analytical techniques with solid-state nanopores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据