4.7 Article

Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment

期刊

DIABETES
卷 54, 期 5, 页码 1452-1458

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.54.5.1452

关键词

-

资金

  1. NINDS NIH HHS [R01 NS41421] Funding Source: Medline

向作者/读者索取更多资源

Hypoglycemia-induced brain injury is a significant obstacle to optimal blood glucose control in diabetic patients. Severe hypoglycemia triggers a cascade of events in vulnerable neurons that may culminate in cell death even after glucose normalization. A key event in this cascade is the activation of poly(ADP-ribose) polymerase-1 (PARP-1). Activated PARP-1 consumes cytosolic NAD, and because NAD is required for glycolysis, hypoglycemia-induced PARP-1 activation may render cells unable to use glucose even when glucose availability is restored. Pyruvate, however, can be metabolized in the absence of cytosolic NAD. Here we tested whether pyruvate could improve the outcome in rats subjected to insulin-induced hypoglycemia by terminating hypoglycemia with either glucose alone or glucose plus pyruvate. In the four brain regions studied-CA1, subiculum, dentate gyrus of the hippocampus, and piriform cortex-the addition of pyruvate reduced neuron death by 70-90%. Improved neuron survival was also observed when pyruvate delivery was delayed for up to 3 It. The improved neuron survival was accompanied by a sustained improvement in cognitive function as assessed by the Morris water maze. These results suggest that pyruvate may significantly improve the outcome after severe hypoglycemia by circumventing a sustained impairment in neuronal glucose utilization resulting from PARP-1 activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据