4.8 Article

Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy

向作者/读者索取更多资源

Fluorescence microscopy in the near-infrared between 950 and 1600 nm has been developed as a novel method to image and study single-walled carbon nanotubes (SWNTs) in a variety of environments. Intrinsic photoluminescence of disaggregated pristine SWNTs was excited by a diode laser and detected with a two-dimensional InGaAs photodiode array. Individual nanotubes were visualized with a spatial resolution of ca. 1 mu m and characterized with polarization measurements and emission spectroscopy. Spatially resolved emission spectra allowed (n,m) identification of single nanotubes and revealed small environmentally induced spectral shifts between segments of long tubes. Nanotube motions in aqueous surfactant were visualized with a time resolution of 50 ms and used to estimate the diffusion coefficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据