4.5 Article

Multi-element signatures of stream sediments and sources under moderate to low flow conditions

期刊

APPLIED GEOCHEMISTRY
卷 24, 期 5, 页码 800-809

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.apgeochem.2009.01.005

关键词

-

资金

  1. Scottish Executive Rural and Environment Research and Analysis Directorate

向作者/读者索取更多资源

This study assesses a simple sediment source tracing method using major- (Al, Ca, Fe, K, Mg, Mn, Na, P, Si. Ti) and trace-element (Ba, Be, Ce, Co, Cr, Mo, Nd, Pb, Sr, Th, V, Y, Zn) signatures of stream suspended particulate matter (SPM), bed sediments and soils in a small agricultural catchment in NE Scotland. Whilst most erosion studies characterise the large amounts of material mobilised at the highest flows, this study aimed to assess properties of sediments during moderate to low flow periods. These occur more frequent than intense storms and are important in linking stream sediments, near-channel sources and aquatic ecosystem impacts. Data were transformed by multivariate statistical methods to compare elemental signatures of SPM (ranging from 3 to 53 mg L-1 in the stream) and stream bed sediments with a limited number of near-channel source soils. Increased concentrations of Ce, Nd, Th and Y in subsoils contributed to the ability to discriminate between surface fieldslope and stream bank erosion sources. Stream bed sediments showed close matches with compositions of stream bank and arable surface soils, but signatures of SPM differed greatly from any of the sources. Large concentrations of Cr, Pb and Zn in SPM, particularly during summer (677, 177 and 661 mg kg(-1), respectively) exceeded water quality standards and were linked to an accumulation of trace elements associated with biological material. The potential for within-stream alteration of SPM in relation to erosion sources was confirmed by changes in the nature of the SPM organic matter observed by IR spectroscopy. Thus the potential is shown for multi-element signatures to give information on catchment sediment sources to aid land management decisions, given careful consideration of the effects of in-stream alteration of eroded material. However, this combined information may be beneficial to process understanding linking land use and stream ecosystems at critical ecological periods. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据