4.8 Article

Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 9, 页码 2690-2699

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac048378t

关键词

-

向作者/读者索取更多资源

In the present paper, an electromagnetically actuated resonant cantilever gas sensor system is presented that features piezoresistive readout by means of stress-sensitive MOS transistors. The monolithic gas sensor system includes a polymer-coated resonant cantilever and the necessary oscillation feedback circuitry, both monolithically integrated on the same chip. The fully differential feedback circuit allows for operating the device in self-oscillation with the cantilever constituting the frequency-determining element of the feedback loop. The combination of magnetic actuation and transistor-based readout entails little power dissipation on the cantilever and reduces the temperature increase in the sensitive polymer layer to less than 1 degrees C, whereas previous designs with thermally actuated cantilevers showed a temperature increase of up to 19 T. The lower temperature of the sensitive polymer layer on the cantilever directly improves the sensitivity of the sensor system as the extent of analyte physisorption decreases with increasing temperature. The electromagnetic sensor design shows an almost 2 times larger gas sensitivity than the earlier design, which is thermally actuated and read out using p-diffused resistors. The gas sensor is fabricated using an industrial complementary metal oxide semiconductor (CMOS) process and post-CMOS micromachining.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据