4.5 Article

The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends

期刊

JOURNAL OF RHEOLOGY
卷 49, 期 3, 页码 783-798

出版社

JOURNAL RHEOLOGY AMER INST PHYSICS
DOI: 10.1122/1.1888625

关键词

-

向作者/读者索取更多资源

The effect of block copolymer architecture on the suppression of droplet coalescence and on the interfacial elasticity was studied in immiscible blends of polydimethylsiloxane (PDMS) and polyisoprene (PI) with a droplet-matrix morphology. The PDMS-PI diblock copolymers used in this study to compatibilize the blends differ in molecular weight and degree of asymmetry of the blocks. The general Palierne model with an interfacial shear modulus was used to analyze the dynamic measurements performed after different shear histories. It was shown that the coalescence suppression is more effective when the amount of compatibilizer increases and when the overall molecular weight of the block copolymer increases. When comparing the coalescence behavior of a blend and the inverse blend, it was shown that coalescence is suppressed more when the longest block of the block copolymer is located in the matrix. The interfacial relaxation time increases with molecular weight of the blocks for symmetric block copolymers. Asymmetry of the blocks also causes it to increase. A scaling relation is proposed for the interfacial relaxation time of PI/PDMS blends. This master curve is extended for varying viscosity ratios of the blend and with data of a polydimethylsiloxane (PDMS)/polyisobutylene (PIB) blend and a polymethylmethacrylate (PMMA)/polystyrene (PS) blend. (C) 2005 The Society of Rheology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据