4.8 Article

Electrochemical energy storage in ordered porous carbon materials

期刊

CARBON
卷 43, 期 6, 页码 1293-1302

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2004.12.028

关键词

porous carbons; impregnation; chemical vapor infiltration; electrochemical properties; microporosity

向作者/读者索取更多资源

Highly ordered porous carbon materials obtained by a replica technique have been used for supercapacitor application and electrochemical hydrogen storage. For the preparation of the well-tailored carbons, MCM-48, SBA-15 and MSU-1 molecular sieves served as templates, whereas a sucrose solution, propylene and pitch were the carbon source. A careful physico-chemical characterization (CO2 and N-2 adsorption, X-ray diffraction, electron microscopy observations) allowed to estimate the total surface area, the pori size distribution, the micro/mesopore volume as well as the structure and the microtexture of the investigated carbons. The specific capacitance (F/g) and the hydrogen adsorption capacity in the carbon nanopores were correlated with the microtextural properties. Especially, a linear dependence has been found between the capacitance or the amount of electrochemically stored hydrogen and the ultramicropores (pores smaller than 0.7 nm) volume. It clearly indicates that in these carbons: (a) the major part of the electrical double layer is charged with non-solvated ions; (b) ultramicropores play a determinant role for hydrogen storage. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据