4.2 Article Proceedings Paper

Signaling from the membrane via membrane estrogen receptor-α:: Estrogens, xenoestrogens, and phytoestrogens

期刊

STEROIDS
卷 70, 期 5-7, 页码 364-371

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.steroids.2005.03.002

关键词

nongenomic; steroid action; estradiol; mechanism of action

资金

  1. NIEHS NIH HHS [R01 ES010987-02] Funding Source: Medline
  2. PHS HHS [010987] Funding Source: Medline

向作者/读者索取更多资源

Estrogen mimetics in the environment and in foods can have important consequences for endocrine functions. When previously examined for action via genomic steroid signaling mechanisms, most of these compounds were found to be very weak agonists. We have instead tested their actions via several membrane-initiated signaling mechanisms in GH3/B6 pituitary tumor cells extensively selected for high (responsive) or low (nonresponsive) expression of the membrane version of estrogen receptor-alpha (mER alpha). We found many estrogen mimetic compounds to be potently active in our quantitative extracellular-regulated kinase (ERK) activation assays, to increase cellular Ca++ levels, and to cause rapid prolactin release. However, these compounds may activate one or both mechanisms with different potencies. For instance, some compounds activate ERKs in both pM and nM concentration ranges, while others are only active at nM and higher concentrations. Compounds also show great differences in their temporal activation patterns. While estradiol causes a bimodal time-dependent ERK activation (peaking at both 3 and 30 min), most estrogen mimetics cause either an early phase activation, a late phase activation, or an early sustained activation. One xenoestrogen known to be a relatively potent activator of estrogen response element-mediated actions (bisphenol A) is inactive as an ERK activator, and only a modest inducer of C++ levels and prolactin release. Many different signaling machineries culminate in ERK activation, and xenoestrogens differentially affect various pathways. Clearly individual xenoestrogens must be individually investigated for their differing abilities to activate distinct membrane-initiated signal cascades that lead to a variety of cellular functions. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据