4.8 Article Proceedings Paper

Characterizing single suspended cells by optorheology

期刊

ACTA BIOMATERIALIA
卷 1, 期 3, 页码 263-271

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2005.02.010

关键词

microrheology; shear modulus; optical stretcher; cytoskeleton; cancer

向作者/读者索取更多资源

The measurement of the mechanical properties of individual cells has received much attention in recent years. In this paper we describe the application of optically induced forces with an optical stretcher to perform step-stress experiments on individual suspended fibroblasts. The conversion from creep-compliance to frequency-dependent complex shear modulus reveals characteristic viscoelastic signatures of the underlying cytoskeleton and its dynamic molecular properties. Both normal and cancerous fibroblasts display a single stress relaxation time in the observed time and frequency space that can be related to the transient binding of actin crosslinking proteins. In addition, shear modulus and steady-state viscosity of the shell-like actin cortex as the main module resisting small deformations are extracted. These values in combination with insight into the cells' architecture are used to explain their different deformability. This difference can then be exploited to distinguish normal from cancerous cells. The nature of the optical stretcher as an optical trap allows easy incorporation in a microfluidic system with automatic trapping and alignment of the cells, and thus a high measurement throughput. This carries the potential for using the microfluidic optical stretcher to investigate cellular processes involving the cytoskeleton and to diagnose diseases related to cytoskeletal alterations. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据