4.7 Article

Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks

向作者/读者索取更多资源

Motivation: Apoptosis has drawn the attention of researchers because of its importance in treating some diseases through finding a proper way to block or slow down the apoptosis process. Having understood that caspase cleavage is the key to apoptosis, we find novel methods or algorithms are essential for studying the specificity of caspase cleavage activity and this helps the effective drug design. As bio-basis function neural networks have proven to outperform some conventional neural learning algorithms, there is a motivation, in this study, to investigate the application of bio-basis function neural networks for the prediction of caspase cleavage sites. Results: Thirteen protein sequences with experimentally determined caspase cleavage sites were downloaded from NCBI. Bayesian bio-basis function neural networks are investigated and the comparisons with single-layer perceptrons, multilayer perceptrons, the original bio-basis function neural networks and support vector machines are given. The impact of the sliding window size used to generate sub-sequences for modelling on prediction accuracy is studied. The results show that the Bayesian bio-basis function neural network with two Gaussian distributions for model parameters (weights) performed the best and the highest prediction accuracy is 97.15 +/- 1.13%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据