4.8 Article

Inverted-colloidal-crystal hydrogel matrices as three-dimensional cell scaffolds

向作者/读者索取更多资源

Successful engineering of functional tissues requires the development of three-dimensional (3D) scaffolds that can provide an optimum microenvironment for tissue growth and regeneration. A new class of 3D scaffolds with a high degree of organization and unique topography is fabricated from polyacrylamide hydrogel. The hydrogel matrix is molded by inverted colloidal crystals made from 1041 mu m poly(methyl methacrylate) spheres. The topography of the scaffold can be described as hexagonally packed 97 mu m spherical cavities interconnected by a network of channels. The scale of the long-range ordering of the cavities exceeds several millimeters. In contrast to analogous material in the bulk, hydrogel shaped as an inverted opal exhibits much higher swelling ratios; its swelling kinetics is an order of magnitude faster as well. The engineered scaffold possesses desirable mechanical and optical properties that can facilitate tissue regeneration while allowing for continuous high-resolution optical monitoring of cell proliferation and cell-cell interaction within the scaffold. The scaffold biocompatibility as well as cellular growth and infiltration within the scaffold were observed for two distinct human cell lines which were seeded on the scaffold and were tracked microscopically up to a depth of 250 mu m within the scaffold for a duration of up to five weeks. Ease of production, a unique 3D structure, biocompatibility, and optical transparency make this new type of hydrogel scaffold suitable for most challenging tasks in tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据