4.6 Article

Interpretive advantages of 90°-phase wavelets:: Part 1 -: Modeling

期刊

GEOPHYSICS
卷 70, 期 3, 页码 C7-C15

出版社

SOC EXPLORATION GEOPHYSICISTS - SEG
DOI: 10.1190/1.1925740

关键词

-

向作者/读者索取更多资源

We discuss, in a two-part article, the benefits of 90 degrees phase wavelets in stratigraphic and lithologic interpretation of seismically thin beds. In Part 1, seismic models of Ricker wavelets with selected phases are constructed to assess interpretability of composite waveforms in increasingly complex geologic settings. Although superior for single surface and thick-layer interpretation, zero-phase seismic data are not optimal for interpreting beds thinner than a wavelength because their antisymmetric thin-bed responses tie to the reflectivity series rather than to impedance logs. Nonsymmetrical wavelets (e.g., minimum-phase wavelets) are generally not recommended for interpretation because their asymmetric composite waveforms have large side lobes. Integrated zero-phase traces are also less desirable because they lose high-frequency components in the integration process. However, the application of 90 degrees-phase data consistently improves seismic interpretability. The unique symmetry of 90 degrees-phase thin-bed response eliminates the dual polarity of thin-bed responses, resulting in better imagery of thin-bed geometry, impedance profiles, lithology, and stratigraphy. Less amplitude distortion and less stratigraphy-independent, thin-bed interference lead to more accurate acoustic impedance estimation from amplitude data and a better tie of seismic traces to lithology-indicative wireline logs. Field data applications are presented in part 2 of this article.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据