4.1 Article

Homologous recombination in plants is temperature and day-length dependent

出版社

ELSEVIER
DOI: 10.1016/j.mrfmmm.2004.12.011

关键词

homologous recombination; plant genome stability; temperature and photoperiod influence on recombination

向作者/读者索取更多资源

Homologous recombination (HR) as a strand break repair mechanism was shown to be influenced by various factors. The balance of different vitamins, macro- and microelements, light spectrum, sodium chloride concentration as well as various environmental mutagens were shown to influence the frequency of HR. In this paper we analysed the influence of temperature (4, 22. and 32 C-degrees and day/night duration on the genome stability of plants. We analyzed the HR frequency in transgenic Arabidopsis thaliana plants carrying beta-alucuronidase based homologous recombination substrate. To find the recombination rate (RR), we related the HR frequency to the number of genomes present in plants grown under different conditions. The RR was also standardized to the transcription activity of the transgene. We found RR to be higher in plants grown at suboptimal temperatures (either 4 or 32 degrees C) as compared to plants grown at 22 degrees C. This negatively correlated with the plant metabolic rate and positively p correlated with concentration of peroxide produced by plant. In contrast, the RR in plants grown at different day length (8-24 h) was the lowest in plants grown at the longest day (24 h) and highest in the plants grown at the shortest day (8 h). Over 15-fold difference in the RR between plants grown at the shortest and the longest day was observed. Such a difference in recombination rate was primarily due to the higher transgene activity and higher endoreduplication levels in plants grown at longer days. Our data suggests that even moderate changes of environmental conditions may have a significant effect on plant genome stability. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据