4.6 Article Proceedings Paper

Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 18, 页码 18336-18340

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500007200

关键词

-

资金

  1. NHLBI NIH HHS [HL-69817, HL-64735, HL58541, HL56984] Funding Source: Medline

向作者/读者索取更多资源

Genetic deficiency of the plasma phospholipid transfer protein (PLTP) in mice unexpectedly causes a substantial impairment in liver secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To explore the mechanism, we examined the three known pathways for hepatic apoB secretory control, namely endoplasmic reticulum (ER)/proteasome-associated degradation (ERAD), post-ER pre-secretory proteolysis (PERPP), and receptor-mediated degradation, also known as re-uptake. First, we found that ERAD and cell surface re-uptake were not active in PLTP-null hepatocytes. Moreover, ER-to-Golgi blockade by brefeldin A, which enhances ERAD, equalized total apoB recovery from PLTP-null and wildtype cells, indicating that the relevant process occurs post-ER. Second, because PERPP can be stimulated by intracellular reactive oxygen species (ROS), we examined hepatic redox status. Although we found previously that PLTP-null mice exhibit elevated plasma concentrations of vitamin E, a lipid anti-oxidant, we now discovered that their livers contain significantly less vitamin E and significantly more lipid peroxides than do livers of wild-type mice. Third, to establish a causal connection, the addition of vitamin E or treatment with an inhibitor of intracellular iron-dependent peroxidation, desferrioxamine, abolished the elevation in cellular ROS as well as the defect in apoB secretion from PLTP-null hepatocytes. Overall, we conclude that PLTP deficiency decreases liver vitamin E content, increases hepatic oxidant tone, and substantially enhances ROS-dependent destruction of newly synthesized apoB via a post-ER process. These findings are likely to be broadly relevant to hepatic apoB secretory control in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据