4.8 Article

A gating mechanism proposed from a simulation of a human α7 nicotinic acetylcholine receptor

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0407739102

关键词

-

向作者/读者索取更多资源

The nicotinic acetylcholine receptor is a well characterized ligand-gated ion channel, yet a proper description of the mechanisms involved in gating, opening, closing, ligand binding, and desensitization does not exist. Until recently, atomic-resolution structural information on the protein was limited, but with the production of the x-ray crystal structure of the Lymnea stagnalis acetylcholine binding protein and the EM image of the transmembrane domain of the torpedo electric ray nicotinic channel, we were provided with a window to examine the mechanism by which this channel operates. A 15-ns all-atom simulation of a homology model of the homomeric human alpha 7 form of the receptor was conducted in a solvated palmitoyl-2-oleoyl-sn-glycerol-phosphatidylcholine bilayer and examined in detail. The receptor was unliganded. The structure undergoes a twist-to-close motion that correlates movements of the C loop in the ligand binding domain, via the beta 10-strand that connects the two, with the 10 degrees rotation and inward movement of two nonadjacent subunits. The Cys loop appears to act as a stator around which the a-helical transmembrane domain can pivot and rotate relative to the rigid beta-sheet binding domain. The M2-M3 loop may have a role in controlling the extent or kinetics of these relative movements. All of this motion, along with essential dynamics analysis, is suggestive of the direction of larger motions involved in gating of the channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据