4.5 Article

An unusual fold for potassium channel blockers:: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis

期刊

BIOCHEMICAL JOURNAL
卷 388, 期 -, 页码 263-271

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20041705

关键词

cystine-stabilized helix-loop-helix structural motif; NMR; Opisthacanthus madagascariensis; potassium channel; scorpion toxin; structure determination

向作者/读者索取更多资源

The Om-toxins are short peptides (23-27 amino acids) purified from the venom of the scorpion Opisthacanthus madagascariensis. Their pharmacological targets are thought to be potassium channels. Like Cs alpha/beta (cystine-stabilized alpha/beta) toxins, the Om-toxins alter the electrophysiological properties of these channels; however, they do not share any sequence similarity with other scorpion toxins. We herein demonstrate by electrophysiological experiments that Om-toxins decrease the amplitude of the K+ current of the rat channels Kv1.1 and Kv1.2, as well as human Kv1.3. We also determine the solution structure of three of the toxins by use of two-dimensional proton NMR techniques followed by distance geometry and molecular dynamics. The structures of these three peptides display an uncommon fold for ion-channel blockers, Cs alpha/alpha (cystine-stabilized alpha-helix-loop-helix), i.e. two alpha-helices connected by a loop and stabilized by two disulphide bridges. We compare the structures obtained and the dipole moments resulting from the electrostatic anisotropy of these peptides with those of the only other toxin known to share the same fold, namely kappa-hefutoxin1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据