4.7 Article

Ah receptor- and TCDD-mediated liver tumor promotion:: clonal selection and expansion of cells evading growth arrest and apoptosis -: Commentary

期刊

BIOCHEMICAL PHARMACOLOGY
卷 69, 期 10, 页码 1403-1408

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2005.02.004

关键词

Ah receptor; apoptosis; cell contact inhibition; liver tumor promotion; retinoblastoma protein; retinoids

向作者/读者索取更多资源

The Ah receptor (AhR) has been characterized as a ligand-activated transcription factor which belongs to the bHLH/PAS (basic helix-loop-helix/Per-Amt-Sim) family of chemosensors. Transgenic mouse models revealed adaptive and developmental functions of the AhR in the absence of exogenous ligands. Use of persistent agonists such as dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds demonstrated that the AhR mediates a plethora of species- and tissue-dependent toxicities, including chloracne, wasting, teratogenicity, immunotoxicity, liver tumor promotion and carcinogenicity. However, molecular mechanisms underlying most aspects of these toxic responses as well as biological functions of the AhR are currently unknown. Previous studies of liver tumor promotion in the two-stage hepatocarcinogenesis model indicated that TCDD mediates clonal expansion of 'initiated' preneoplastic hepatocytes, identified as enzyme-altered foci (EAF) by inhibiting apoptosis and bypassing AhR-mediated growth arrest. In contrast, the Ah receptor has been shown in cell models to stimulate growth arrest and apoptosis. Possible underlying mechanisms of these AhR responses are discussed, including enhanced metabolism of retinoic acid which attenuates TGFP-mediated apoptosis and interaction of the Ah receptor with the hypophosphorylated retinoblastoma tumor suppressor protein. The discrepancy between in vivo findings in EAF and AhR functions may be solved by hypothesizing that sustained activation of the Ah receptor generates a strong selective pressure in liver treated with genotoxic carcinogens leading to selection and expansion of clones evading growth arrest and apoptosis. Models are discussed which may facilitate verification of this hypothesis. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据