4.6 Article

Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering -: art. no. 103509

期刊

JOURNAL OF APPLIED PHYSICS
卷 97, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1897493

关键词

-

向作者/读者索取更多资源

ZnO particles embedded in SiO2 thin films were prepared by a radio-frequency magnetron sputtering technique. X-ray diffraction (XRD) and optical-absorption spectra showed that ZnO particles with hexagonal wurtzite structure had been embedded in the SiO2 matrix, and the size of ZnO particles increased with increasing annealing temperature from 773 to 973 K. Raman-scattering and Fourier transform infrared (FTIR) spectrum measurements also confirmed the presence of ZnO particles. When the annealing temperature was lower than 973 K, room-temperature photoluminescence (PL) spectra showed dominative deep-level emissions in the visible region and very weak ultraviolet emissions. As the annealing temperature increased to 973 K, an emission band in the ultraviolet region besides the emissions from free and bound excitons recombination was observed in the low-temperature PL spectra. The origin of the ultraviolet emission bands was discussed with the help of temperature-dependent PL spectra. When the annealing temperature was higher than 973 K, Zn2SiO4 particles were formed, as shown by XRD and FTIR results. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据