4.8 Article

Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems

期刊

APPLIED ENERGY
卷 230, 期 -, 页码 62-77

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.08.079

关键词

All-electric ships; Energy management; Model predictive control (MPC); Real-time optimization; Hybrid energy storage

资金

  1. U.S. Office of Naval Research (ONR) [00014-15-1-2668]

向作者/读者索取更多资源

Electrification is a clear trend for both commercial and military ship development. Shipboard load fluctuations, such as propulsion-load fluctuations and pulse power loads, can significantly affect power system reliability. In order to address this issue, this paper explores a real-time model predictive control based energy management strategy for load fluctuation mitigation in all-electric ships. A battery combined with ultra-capacitor hybrid energy storage system (HESS) is used as a buffer to compensate load fluctuations from the shipboard network. In order to implement the proposed real-time MPC-based energy management strategy on a physical testbed, three special efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Given the multi-frequency characteristics of load fluctuations, a filter-based power split strategy is developed as a baseline control to evaluate the proposed MPC. Compared to the filter-based strategy, the experimental results show that the proposed realtime MPC achieves superior performance in terms of enhanced system reliability, improved HESS efficiency, long self-sustained time, and extended battery life. The bus voltage variation and hybrid energy storage losses can be reduced by up to 38% and 65%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据