4.6 Article

Recombinant C345C and factor I modules of complement components C5 and C7 inhibit C7 incorporation into the complement membrane attack complex

期刊

JOURNAL OF IMMUNOLOGY
卷 174, 期 10, 页码 6227-6232

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.174.10.6227

关键词

-

资金

  1. NIGMS NIH HHS [GM29831] Funding Source: Medline

向作者/读者索取更多资源

Complement component C5 binds to components C6 and C7 in reversible reactions that are distinct from the essentially nonreversible associations that form during assembly of the complement membrane attack complex (MAC). We previously reported that the similar to 150-aa residue C345C domain (also known as NTR) of C5 mediates these reversible reactions, and that the corresponding recombinant module (rC5-C345C) binds directly to the tandem pair of similar to 75-residue factor I modules from C7 (C7-FIMs). We suggested from these and other observations that binding of the C345C module of C5 to the FIMs of C7, but not C6, is also essential for MAC assembly itself. The present report describes a novel method for assembling a complex that appears to closely resemble the MAC on the sensor chip of a surface plasmon resonance instrument using the complement-reactive lysis mechanism. This method provides the ability to monitor individually the incorporation of C7, C8, and C9 into the complex. Using this method, we found that C7 binds to surface-bound C5b,6 with a K-d of similar to 3 pM, and that micromolar concentrations of either rC5-C345C or rC7-FIMs inhibit this early step in MAC formation. We also found that similar concentrations of either module inhibited complement-mediated erythrocyte lysis by both the reactive lysis and classical pathway mechanisms. These results demonstrate that the interaction between the C345C domain of C5 and the FIMs of C7, which mediates reversible binding of C5 to C7 in solution, also plays an essential role in MAC formation and complement lytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据