4.8 Article

EGR control on operation of a tar tolerant HCCI engine with simulated syngas from biomass

期刊

APPLIED ENERGY
卷 227, 期 -, 页码 159-167

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.08.233

关键词

Homogeneous Charge Compression Ignition; Biomass syngas; Exhaust Gas Recirculation

资金

  1. Service Public de Wallonie, Belgium

向作者/读者索取更多资源

In combined heat and power plants operated with biomass syngas, the removal of condensible tars is a necessary but expensive step (up to one third of the installation and maintenance costs). This step is required because the syngas has to be cooled down to avoid knocking in the spark ignition engines traditionally used in such plants. To remove the tar condensation problem, we developed an alternative system based on an Homogeneous Charge Compression Ignition (HCCI) engine operated at intake temperatures above the tar dew point. To address the challenge of power derating of such engine setups, the current paper focuses on the application of Exhaust Gas Recirculation (EGR) as a control parameter that would indirectly allow the improvement of the engine performance. Based on a conservative estimate of tar dew points, HCCI combustion was studied at an intake temperature of 250 degrees C using synthetic biomass syngas and synthetic EGR on a mono-cylinder HCCI engine operated at 1000 RPM. The effects of charge dilution, thermal and kinetic damping due to the EGR gases were also analysed to understand their main effects. The use of EGR successfully increased the maximum achievable Indicated Mean Effective Pressure from 2.5 bar at EGR = 0% up to 3.3 bar at EGR = 25%, through damping the maximum pressure rise rate and allowing higher equivalence ratios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据