4.8 Article

Genomic and proteomic comparisons between bacterial and archaeal genomes and related comparisons with the yeast and fly genomes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0502314102

关键词

Archaea; Bacteria; predicted highly expressed; genomic comparisons; Drosophila

资金

  1. NIGMS NIH HHS [5R01GM10452-40, R01 GM010452] Funding Source: Medline

向作者/读者索取更多资源

Bacterial, archaeal, yeast, and fly genomes are compared with respect to predicted highly expressed (PHX) genes and several genomic properties. There is a striking difference in the status of PHX ribosomal protein (RP) genes where the archaeal genome generally encodes more RP genes and fewer PHX RPs compared with bacterial genomes. The increase in RPs in archaea and eukaryotes compared with that in bacteria may reflect a more complex set of interactions in archaea and eukaryotes in regulating translation, e.g., differences in structure requiring scaffolding of longer rRNA molecules, expanded interactions with the chaperone machinery, and, in eukaryotic interactions with endoplasmic reticulum components. The yeast genome is similar to fast-growing bacteria in PHX genes but also features several cytoskeletal genes, including actin and tropomyosin, and several signal transduction regulatory proteins from the 14.3.3 family. The most PHX genes of Drosophila encode cytoskeletal and exoskeletal proteins. We found that the preference of a microorganism for an anaerobic metabolism correlates with the number of PHX enzymes of the glycolysis pathway that well exceeds the number of PHX enzymes acting in the tricarboxylic acid cycle. Conversely, if the number of PHX enzymes of the tricarboxylic acid cycle well exceeds the PHX enzymes of glycolysis, an aerobic metabolism is preferred. Where the numbers are approximately commensurate, a facultative growth behavior prevails.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据