4.4 Article

Further experiences with computing non-hydrostatic free-surface flows involving water waves

期刊

出版社

WILEY
DOI: 10.1002/fld.821

关键词

water waves; non-hydrostatic; finite volume; vertical boundary-fitted co-ordinate; semi-implicit pressure correction

向作者/读者索取更多资源

A semi-implicit, staggered finite volume technique for non-hydrostatic, free-surface flow governed by the incompressible Euler equations is presented that has a proper balance between accuracy, robustness and computing time. The procedure is intended to be used for predicting wave propagation in coastal areas. The splitting of the pressure into hydrostatic and non-hydrostatic components is utilized. To ease the task of discretization and to enhance the accuracy of the scheme, a vertical boundary-fitted co-ordinate system is employed, permitting more resolution near the bottom as well as near the free surface. The issue of the implementation of boundary conditions is addressed. As recently proposed by the present authors, the Keller-box scheme for accurate approximation of frequency wave dispersion requiring a limited vertical resolution is incorporated. The both locally and globally mass conserved solution is achieved with the aid of a projection method in the discrete sense. An efficient preconditioned Krylov subspace technique to solve the discretized Poisson equation for pressure correction with an unsymmetric matrix is treated. Some numerical experiments to show the accuracy, robustness and efficiency of the proposed method are presented. Copyright (c) 2004 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据