4.7 Article

Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 20, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.1904589

关键词

-

向作者/读者索取更多资源

In this paper, the calculation of electric-field-like properties based on higher-order Douglas-Kroll-Hess (DKH) transformations is discussed. The electric-field gradient calculated within the Hartree-Fock self-consistent field framework is used as a representative property. The properties are expressed as an analytic first derivative of the four-component Dirac energy and the nth-order DKH energy, respectively. The differences between a forward transformation of the relativistic energy or the back transformation of the wave function is discussed in some detail. Detailed test calculations were carried out on the electric-field gradient at the halogen nucleus in the series HX (X= F, Cl, Br, I, At) for which extensive reference data are available. The DKH method is shown to reproduce (spin-free) four-component Dirac-Fock results to an accuracy of better than 99% which is significantly closer than previous DKH studies. The calculations of both the Hamiltonian and the property operator are shown to be essentially converged after the second-order transformation, even for elements as heavy as At. In addition, we have obtained results within the density-functional framework using the DKHZ and zeroth-order regular approximation (ZORA) methods. The latter results included picture-change effects at the scalar relativistic variant of the ZORA-4 level and were shown to be in quantitative agreement with earlier results obtained by van Lenthe and Baerends. The picture-change effects are somewhat smaller for the ZORA method compared to DKH. For heavier elements significant differences in the field gradients predicted by the two methods were found. Based on comparison with four-component Dirac-Kohn-Sham calculations, the DKH results are more accurate. Compared to the spin-free Dirac-Kohn-Sham reference values, the ZORA-4 formalism did not improve the results of the ZORA calculations. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据