4.6 Article

Charge stabilization in nonpolar solvents

期刊

LANGMUIR
卷 21, 期 11, 页码 4881-4887

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la046751m

关键词

-

向作者/读者索取更多资源

While the important role of electrostatic interactions in aqueous colloidal suspensions is widely known and reasonably well-understood, their relevance to nonpolar suspensions remains mysterious. We measure the interaction potentials of colloidal particles in a nonpolar solvent with reverse micelles. We find surprisingly strong electrostatic interactions characterized by surface potentials, vertical bar e zeta vertical bar, from 2.0 to 4.4 k(B)T and screening lengths, kappa(-1), from 0.2 to 1.4 mu m. Interactions depend on the concentration of reverse micelles and the degree of confinement. Furthermore, when the particles are weakly confined, the values of vertical bar e zeta vertical bar and kappa extracted from interaction measurements are consistent with bulk measurements of conductivity and electrophoretic mobility. A simple thermodynamic model, relating the structure of the micelles to the equilibrium ionic strength, is in good agreement with both conductivity and interaction measurements. Since dissociated ions are solubilized by reverse micelles, the entropic incentive to charge a particle surface is qualitatively changed from aqueous systems, and surface entropy plays an important role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据