4.6 Article

Singlet excited-state dynamics of 5-fluorocytosine and cytosine: An experimental and computational study

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 109, 期 20, 页码 4431-4436

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp045614v

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM064563, R01 GM64563] Funding Source: Medline

向作者/读者索取更多资源

The photophysics of singlet excited 5-fluorocytosine (5FC) was studied in steady-state and time-resolved experiments and theoretically by quantum chemical calculations. Femtosecond transient absorption measurements show that replacement of the C5 hydrogen of cytosine by fluorine increases the excited-state lifetime by 2 orders of magnitude from 720 fs to 73 +/- 4 ps. Experimental evidence indicates that emission in both compounds originates from a single tautomeric form. The lifetime of 5FC is the same within experimental uncertainty in the solvents ethanol and dimethyl sulfoxide. The insensitivity of the S, lifetime to the protic nature of the solvent suggests that proton transfer is not the principal quenching mechanism for the excited state. Excited-state calculations were carried out for the amino-keto tautomer of 5FC, the dominant species in polar environments, in order to understand its longer excited-state lifetime. CASSCF and CAS-PT2 calculations of the excited states show that the minimum energy path connecting the minimum of the (1)pi,pi* state with the conical intersection responsible for internal conversion has essentially the same energetics for cytosine and 5FC, suggesting that both bases decay nonradiatively by the same mechanism. The dramatic difference in lifetimes may be due to subtle changes along the decay coordinate. A possible reason may be differences in the intramolecular vibrational redistribution rate from the Franck-Condon active, in-plane modes to the out-of-plane modes that must be activated to reach the conical intersection region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据