4.6 Article

CHIP controls the sensitivity of transforming growth factor-β signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 21, 页码 20842-20850

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M412275200

关键词

-

向作者/读者索取更多资源

Transforming growth factor-beta (TGF-beta) signaling is critical in a variety of biological processes such as cell proliferation, differentiation, and apoptosis. TGF-beta signaling is mediated by a group of proteins including TGF-beta receptors and Smads. It is known that different cells can exhibit different sensitivities to TGF-beta. Several molecular mechanisms, such as the differential expression of the receptor levels, have been suggested as contributing to these differences. Here, we report evidence for a novel mechanism of regulating TGF-beta sensitivity that depends on the role of CHIP ( carboxyl terminus of Hsc70-interacting protein) in regulating the basal level of Smad3 via the ubiquitin-dependent degradation pathway. First, using a luciferase assay we found that overexpression of CHIP inhibited TGF-beta signaling, whereas silencing CHIP expression by small interfering RNAs led to increased TGF-beta signaling sensitivity. Second, based on the results of cell proliferation assays and JunB expression, we found that TGF-beta signaling could be abolished by stably overexpressing CHIP. Third, in those cell lines with stably expressed CHIP, we observed that the Smad3 protein level was dramatically decreased. Finally, we demonstrated that CHIP served as a U-box dependent E3 ligase that can directly mediate ubiquitination and degradation of Smad3 and that this action of CHIP was independent of TGF-beta signaling. Taken together, these findings suggest that CHIP can modulate the sensitivity of the TGF-beta signaling by controlling the basal level of Smad3 through ubiquitin-mediated degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据