4.7 Article

Involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis

期刊

LIFE SCIENCES
卷 77, 期 2, 页码 160-174

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2004.11.029

关键词

mechanical stretch; death receptor; FADD; apoptosis; cardiomyocyte

向作者/读者索取更多资源

Recent evidences suggest that mechanical overload associated with abnormal blood pressure causes apoptosis in cardiovascular system. Still, the intracellular signaling leading to cardiomyocyte apoptosis has not been fully defined. Previous reports ascribed stretch-induced cardiomyocyte apoptosis to rennin-angiotensin-system (RAS) signaling and/or mitochondria-dependent apoptosis pathway. The present study shows the involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. By employing a well-described in vitro stretch model, we studied stretch-induced apoptosis and found that the death receptor-mediated apoptotic signaling was activated in stretch-induced apoptosis in neonatal rat cardiomyocytes. The major finding are as following: (1) The mechanical stretch activated death receptor-mediated apoptotic signaling in cardiomyocytes, including activation of caspases 8, 9 and 3, up-regulation of Fas, FasL expression and cell surface trafficking of death ligands (FasL and TRAIL); (2) That exogenous death ligand (TRAIL) enhanced, while soluble death receptor (sDR5) neutralized, stretch-induced apoptosis; (3) Adenovirus-delivered dominant negative FADD (FADD-DN) significantly reduced apoptosis, caspases 8, 9, and 3 activation, and stretch-induced cyt c release from mitochondria. These data clearly suggested mechanical stretch activated death receptor-mediated apoptotic signaling in cardiomyocytes. In conclusion, our data suggest that the FADD-linked death receptor signaling may contribute to stretch-induced cardiomyocyte apoptosis, probably through activating mitochondria-dependent apoptotic signaling. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据