4.6 Article

Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue

出版社

ROYAL SOC
DOI: 10.1098/rstb.2005.1639

关键词

anatomical connectivity; persistent angular structure; tractography; magnetic resonance imaging; diffusion-weighted imaging; probabilistic methods

类别

向作者/读者索取更多资源

Recently developed methods to extract the persistent angular structure (PAS) of axonal fibre bundles from diffusion-weighted magnetic resonance imaging (MRI) data are applied to drive probabilistic fibre tracking, designed to provide estimates of anatomical cerebral connectivity. The behaviour of the PAS function in the presence of realistic data noise is modelled for a range of single and multiple fibre configurations. This allows probability density functions (PDFs) to be generated that are parametrized according to the anisotropy of individual fibre populations. The PDFs are incorporated in a probabilistic fibre-tracking method to allow the estimation of whole-brain maps of anatomical connection probability. These methods are applied in two exemplar experiments in the corticospinal tract to show that it is possible to connect the entire primary motor cortex (M1) when tracing from the cerebral peduncles, and that the reverse experiment of tracking from M1 successfully identifies high probability connection via the pyramidal tracts. Using the extracted PAS in probabilistic fibre tracking allows higher specificity and sensitivity than previously reported fibre tracking using diffusion-weighted MRI in the corticospinal tract.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据