4.8 Article

A study of the LCA based biofuel supply chain multi-objective optimization model with multi-conversion paths in China

期刊

APPLIED ENERGY
卷 126, 期 -, 页码 221-234

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2014.04.001

关键词

Biofuel; Life cycle assessment; Supply chain; Multi-objective optimization; MILP

资金

  1. CAE (Chinese Academy of Engineering) [20121667845]

向作者/读者索取更多资源

In this paper we present a life cycle assessment (LCA) based biofuel supply chain model with multi-conversion pathways. This model was formulated as a mixed integer linear programming (MILP) problem which took economic, energy, and environmental criteria (3E) into consideration. The economic objective was measured by the total annual profit. The energy objective was measured by using the average fossil energy input per megajoule (MJ) of biofuel. The environmental objective was measured by greenhouse gas (GHG) emissions per MJ of biofuel. After carefully consideration of the current situation in China, we chose to examine three conversion pathways: bio-ethanol (BE), bio-methanol (BM) and bio-diesel (BD). LCA was integrated to a multi-objective supply chain model by dividing each pathway into several individual parts and analyzing each part. The multi-objective MILP problem was solved using a epsilon-constraint method by defining the total annual profit as the optimization objective and assigning the average fossil energy input per MJ biofuel and GHG emissions per MJ biofuel as constraints. This model was then used to design an experimental biofuel supply chain for China. A surface of the Pareto optimal solutions was obtained by linear interpolation of the non-inferior solutions. The optimal results included the choice of optimal conversion pathway, biomass type, biomass locations, facility locations, and network topology structure in the biofuel supply chain. Distributed and centralized systems were also factored into our experimental system design. In addition, the influence of price change on the optimal solutions was investigated. The optimal solutions obtained in this study reveal a tradeoff between the impact of the 3E criteria. These results indicate that our model will be extremely useful for the design and planning of biofuel supply chains in China. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据