4.8 Article

Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls

期刊

CHEMISTRY OF MATERIALS
卷 17, 期 11, 页码 2940-2945

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm047830m

关键词

-

向作者/读者索取更多资源

Carbon nanotubes with a double coaxial structure of nitrogen-doped and undoped multiwalls were successfully prepared by the template technique using porous anodic aluminum oxide film as a template. The inner carbon layer (or the outer carbon layer) of the double coaxial carbon nanotubes is free from N, while the outer carbon layer (or the inner carbon layer) is uniformly doped with N. Transmission electron microscopy cannot differentiate between the outer and inner layers, but all the results by Raman, X-ray diffraction, and X-ray photoelectron spectroscopy provide evidence that the N-doped layer is less crystallized than the undoped one. Furthermore, the N-doped layer has apparently higher chemical reactivity toward oxygen than the undoped one due to more edge-active sites resulting from the introduction of nitrogen species. Electrical conductance measurement indicates that despite poorer crystallinity the N-doped layer has higher conductivity than undoped one. The resulting multiwalled carbon nanotubes thus have not only double-stack coaxial structure but also dual physicochemical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据