4.7 Article

Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon

期刊

PROGRESS IN PHOTOVOLTAICS
卷 13, 期 4, 页码 287-296

出版社

WILEY
DOI: 10.1002/pip.586

关键词

silicon; recombination; lifetime; boron-oxygen; defects; Czochralski; multicrystalline

向作者/读者索取更多资源

Boron-doped crystalline silicon is the most relevant material in today's solar cell production. Following the trend towards higher efficiencies, silicon substrate materials with high carrier lifetimes are becoming more and more important. In silicon with sufficiently low metal impurity concentrations, the carrier lifetime is ultimately limited by a metastable boron-oxygen-related defect, which forms under minority carrier injection. We have analysed 49 different Czochralski-grown silicon materials of numerous suppliers with various boron and oxygen concentrations. On the basis of our measured lifetime data, we have derived a universal empirical parameterisation predicting the stable carrier lifetime from the boron and oxygen content in the crystalline silicon material. For multicrystalline silicon it is shown that the predicted carrier lifetime can be regarded as a fundamental upper limit. Copyright (c) 2005 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据