4.3 Article

Evaluation of hexagonal chiral structure for morphing airfoil concept

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1243/095441005x30216

关键词

morphing wing; chiral; cellular structure

向作者/读者索取更多资源

In this paper a concept of hexagonal chiral honeycomb is proposed as a truss-like internal structure for adaptive wing box configurations. In contrast with classical centresymmetric cellular structures like rectangular or hexagonal grids, the proposed honeycomb did not present inversion symmetry, and featured an in-plane negative Poisson's ratio behaviour. The cellular structure considered exhibited this Poisson's ratio behaviour under a large range of strain. A set of numerical (finite element, FE) simulations have been carried out in order to correct the initial theoretical predictions to take into account axial, shear and elastic deformations of all elements composing the unit cell when subjected to uniaxial loading. The homogenized linear elastic mechanical properties were then introduced in an FE wing box model of a racecar wing coupled to a panel code to simulate unidirectional static fluid-structure coupling between the wing box and the flow surrounding the airfoil. The cellular solid proposed as the internal layout of the wing box allowed conforming deformations with the external flow, giving a variation of the camber line and trailing edge displacement, and acting as an aileron.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据