3.9 Article Proceedings Paper

On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.shpsb.2005.01.001

关键词

heat theorem; equipartition; ergodic theory; micro-canonical; metric indecomposability; adiabatic invariance; volume entropy

向作者/读者索取更多资源

An elegant but seldom appreciated effort to provide a mechanical model of equilibrium thermodynamics dates back to the Helmholtz theorem (HT). According to this theorem, the thermodynamic relations hold mechanically (without probabilistic assumptions) in the case of one-dimensional monocyclic systems. Thanks to a discrete picture of the phase space, Boltzmann was able to apply the HT to multi-dimensional ergodic systems, suggesting that the thermodynamic relations we observe in macroscopic systems at equilibrium are a direct consequence of the microscopic laws of dynamics alone. Here I review Boltzmann's argument and show that, using the language of the modern ergodic theory, it can be safely re-expressed on a continuum phase space as a generalized Helmholtz theorem (GHT), which can be readily proved. Along the way the agreement between the Helmholtz-Boltzmann theory and that of P. Hertz (based on adiabatic invariance) is revealed. Both theories, in fact, lead to define the entropy as the logarithm of the phase-space volume enclosed by the constant energy hyper-surface (volume entropy). (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据