4.8 Article

Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption

期刊

APPLIED ENERGY
卷 104, 期 -, 页码 418-433

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2012.11.034

关键词

Zeolites; Metal organic frameworks; Amine-modified silica; Carbon capture and storage; Temperature swing adsorption; Vacuum swing adsorption

向作者/读者索取更多资源

In general, the post-combustion capture of CO2 is costly; however, swing adsorption processes can reduce these costs under certain conditions. This review highlights the issues related to adsorption-based processes for the capture of CO2 from flue gas. In particular, we consider studies that investigate CO2 adsorbents for vacuum swing or temperature swing adsorption processes. Zeolites, carbon molecular sieves, metal organic frameworks, microporous polymers, and amine-modified sorbents are relevant for such processes. The large-volume gas flows in the gas flue stacks of power plants limit the possibilities of using regular swing adsorption processes, whose cycles are relatively slow. The structuring of CO2 adsorbents is crucial for the rapid swing cycles needed to capture CO2 at large point sources. We review the literature on such structured CO2 adsorbents. Impurities may impact the function of the sorbents, and could affect the overall thermodynamics of power plants, when combined with carbon capture and storage. The heat integration of the adsorption-driven processes with the power plant is crucial in ensuring the economy of the capture of CO2, and impacts the design of both the adsorbents and the processes. The development of adsorbents with high capacity, high selectivity, rapid uptake, easy recycling, and suitable thermal and mechanical properties is a challenging task. These tasks call for interdisciplinary studies addressing this delicate optimization process, including integration with the overall thermodynamics of power plants. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据