4.8 Article

Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching

期刊

APPLIED ENERGY
卷 99, 期 -, 页码 344-354

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2012.05.046

关键词

Co-firing; Torrefaction; Biomass; CFD; Pulverized coal boiler

资金

  1. EU/KIC-Innoenergy
  2. Ind-Comb AB, Sweden

向作者/读者索取更多资源

Torrefied biomass has several benefits, such as higher energy density, good grindability, higher flowability and uniformity. The process of torrefaction moves the chemical and physical properties of raw biomass close to that of bituminous coal, which allows co-utilization with high substitution ratios of biomass in the existing coal-fired boilers without major modifications. In this study, a torrefaction based co-firing system was proposed and studied. Devolatilization and char oxidize kinetics of the torrefied biomass have been investigated experimentally. CFD modeling of co-firing with varying substitutions of torrefied biomass in a pulverized coal boiler have been carried out. To figure out the boiler performance when co-firing torrefied biomass, five different cases were involved and simulated, coal only, 25% biomass, 50% biomass, 75% biomass, and 100% biomass on thermal basis, respectively. The results showed torrefaction is able to provide a technical option for high substitution ratios of biomass in the co-firing system. The case-study pulverized coal boiler could be fired 100% torrefied biomass without obvious decreasing of the boiler efficiency and fluctuation of boiler load. More positively, the net CO2 and the NOx emissions significantly reduced with increasing of biomass substitutions in the co-firing system. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据