4.8 Article

An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration

期刊

APPLIED ENERGY
卷 99, 期 -, 页码 280-290

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2012.05.023

关键词

IGCC; CO2 capture; Gas turbine; H-2-rich fuel

向作者/读者索取更多资源

In spite of the rapid development and introduction of renewable and alternative resources, coal still continues to be the most significant fuel to meet the global electricity demand. Emission from existing coal based power plants is, besides others, identified as one of the major sources of anthropogenic carbon dioxide, responsible for climate change. Advanced coal based power plants with acceptable efficiency and low carbon dioxide emission are therefore in sharp focus for current development. The integrated gasification combined cycle (IGCC) power plant with pre-combustion carbon capture is a prospective technology option for this purpose. However, such plants currently have limitations regarding fuel flexibility, performance, etc. In an EU initiative (H2-IGCC project), possible improvements of such plants are being explored. These involve using premix combustion of undiluted hydrogen-rich syngas and improved fuel flexibility without adversely affecting the availability and reliability of the plant and also making minor modifications to existing gas turbines for this purpose. In this paper, detailed thermodynamic models and assumptions of the preliminary configuration of such a plant are reported, with performance analysis based on available practical data and information. The overall efficiency of the IGCC power plant with carbon capture is estimated to 36.3% (LHV). The results confirm the fact that a significant penalty on efficiency is associated with the capture of CO2. This penalty is 21.6% relative to the IGCC without CO2 capture, i.e. 10.0% points. Estimated significant performance indicators as well as comparisons with alternative schemes have been presented. Some possible future developments based on these results and the overall objective of the project are also discussed. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据