4.3 Review

Chromatin architecture and functions: the role(s) of poly(ADP-RIBOSE) polymerase and poly(ADPribosyl)ation of nuclear proteins

期刊

BIOCHEMISTRY AND CELL BIOLOGY
卷 83, 期 3, 页码 396-404

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/o05-042

关键词

chromatin; epigenetic; poly(ADP-ribose); PARP

向作者/读者索取更多资源

Epigenetic states that allow chromatin fidelity inheritance can be mediated by several factors. One of them, historic variants and their modifications (including acetylation, methylation, phosphorylation, poly(ADP-ribosyl)ation, and ubiquitylation) create distinct patterns of signals read by other proteins, and are strictly related to chromatin remodelling, which is necessary for the specific expression of a gene, and for DNA repair, recombination, and replication. In the framework of chromatin-controlling factors, the poly(ADP-ribosyl)ation of nuclear proteins, catalysed by poly(ADP-ribose)polymerases (PARPs), has been implicated in the regulation of both physiological and pathological events (gene expression/amplification, cellular division/differentiation, DNA replication, malignant transformation, and apoptotic cell death). The involvement of PARPs in this scenario has raised doubts about the epigenetic value of poly(ADP-ribosyl)ation, because it is generally activated after DNA damage. However, one emerging view suggests that both the product of this reaction, poly(ADP-ribose), and PARPs, particularly PARP 1, play a fundamental role in recruiting protein targets to specific sites and (or) in interacting physically with structural and regulatory factors, through highly reproducible and inheritable mechanisms, often independent of DNA breaks. The interplay of PARPs with protein factors, and the combinatorial effect of poly(ADPribosyl)ation with other post-translational modifications has shed new light on the potential and versatility of this dynamic reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据