4.1 Article Proceedings Paper

Dynamics of the instantaneous firing rate in response to changes in input statistics

期刊

JOURNAL OF COMPUTATIONAL NEUROSCIENCE
卷 18, 期 3, 页码 311-321

出版社

SPRINGER
DOI: 10.1007/s10827-005-0337-8

关键词

integrate-and-fire neuron; noise; dynamical response; spiking mechanism

向作者/读者索取更多资源

We review and extend recent results on the instantaneous firing rate dynamics of simplified models of spiking neurons in response to noisy current inputs. It has been shown recently that the response of the instantaneous firing rate to small amplitude oscillations in the mean inputs depends in the large frequency limit f on the spike initiation dynamics. A particular simplified model, the exponential integrate-and-fire (EIF) model, has a response that decays as 1/f in the large frequency limit and describes very well the response of conductance-based models with a Hodgkin-Huxley type fast sodium current. Here, we show that the response of the EIF instantaneous firing rate also decays as I If in the case of an oscillation in the variance of the inputs for both white and colored noise. We then compute the initial transient response of the firing rate of the EIF model to a step change in its mean inputs and/or in the variance of its inputs. We show that in both cases the response speed is proportional to the neuron stationary firing rate and inversely proportional to a 'spike slope factor' Delta(T) that controls the sharpness of spike initiation: as 1/Delta(T) for a step change in mean inputs, and as 1/Delta(2)(T) for a step change in the variance in the inputs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据