4.1 Article

Alignment of biological microparticles by a polarized laser beam

期刊

出版社

SPRINGER
DOI: 10.1007/s00249-004-0454-8

关键词

birefringence; chloroplast; chromosome; laser tweezers; optical alignment

向作者/读者索取更多资源

The optical alignment of biological samples is of great relevance to microspectrometry and to the micromanipulation of single particles. Recently, Bayoudh et al. (J. Mod. Opt. 50:1581-1590, 2003) have shown that isolated, disk-shaped chloroplasts can be aligned in a controlled manner using an in-plane-polarized Gaussian beam trap, and suggested that this is due to their nonspherical shape. Here we demonstrate that the orientation of various micrometer-sized isolated biological particles, trapped by optical tweezers, can be altered in a controlled way by changing the plane of linear polarization of the tweezers. In addition to chloroplasts, we show that subchloroplast particles of small size and irregular overall shape, aggregated photosynthetic light-harvesting protein complexes as well as chromosomes can be oriented with the linearly polarized beam of the tweezers. By using a laser scanning confocal microscope equipped with a differential polarization attachment, we also measured the birefringence of magnetically oriented granal chloroplasts, and found that they exhibit strong birefringence with large local variations, which appears to originate from stacked membranes. The size and sign of the birefringence are such that the resulting anisotropic interaction with the linearly polarized laser beam significantly contributes to the torque orienting the chloroplasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据