4.6 Review

Ischemia-induced programmed cell death in astrocytes

期刊

GLIA
卷 50, 期 4, 页码 299-306

出版社

WILEY
DOI: 10.1002/glia.20167

关键词

apoptosis; glia; PARP; apoptosis inducing factor; acidosis; oxidative stress

资金

  1. NIGMS NIH HHS [GM 49831] Funding Source: Medline
  2. NINDS NIH HHS [NS 14543, NS 37520] Funding Source: Medline

向作者/读者索取更多资源

Astrocytes are essential for neuronal survival and function, neurogenesis, and neural repair. Although astrocytes are more resistant than neurons to most stress conditions in vitro, certain astrocyte subtypes, such as the glial fibrillary acidic protein (GFAP)-negative protoplasmic astrocytes that predominate in gray matter structures, may be equally or more sensitive than neurons to ischemia in vivo. Programmed cell death differs from passive, necrotic death in that cell constituents actively participate in cell demise. Like neurons, astrocytes undergo programmed cell death during normal development. Cell culture studies have shown that astrocytes can be induced to undergo apoptosis and other forms of programmed cell death by many factors relevant to ischemia, including acidosis, oxidative stress, substrate deprivation, and cytokines. Animal models of cerebral ischemia have confirmed nuclear condensation and upregulation of Bax and caspases in a subset of astrocytes exposed to ischemia especially in immature brain. A causal role for these events in astrocyte death is supported by improved astrocyte survival after inhibition of caspase-dependent cell death pathways. Astrocyte survival is also improved by blocking the poly(ADP-ribose)-1 cell death pathway. Markers of programmed cell death are generally less evident and less widespread in astrocytes than in neighboring neurons. However, most studies to date have relied only on markers of classical apoptosis. In addition, these studies have relied almost exclusively on GFAP to identify astrocytes. Since most protoplasmic astrocytes are poorly immunoreactive for GFAP, the extent of ischemia-induced programmed cell death in this cell type remains uncertain. (c), 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据