4.8 Article

Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids

期刊

APPLIED ENERGY
卷 88, 期 12, 页码 4481-4489

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2011.05.037

关键词

Direct liquid immersion cooling; Silicon concentrator solar cell; Electrical characteristics; Thermal performance

资金

  1. Asia Pacific Partnership Program
  2. China International Science Linkage grant

向作者/读者索取更多资源

Direct liquid-immersion cooling of concentrator solar cells was proposed as a solution for receiver thermal management of concentrating photovoltaic (CPV) and hybrid concentrating photovoltaic thermal (CPV-T) systems. De-ionized (DI) water, isopropyl alcohol (IPA), ethyl acetate, and dimethyl silicon oil were selected as potential immersion liquids based on optical transmittance measurement results. Improvements to the electrical performance of silicon CPV cells were observed under a range of concentrations in the candidate dielectric liquids, arising from improved light collection and reduced cell surface recombination losses from surface adsorption of polar molecules. Three-dimensional numerical simulations with the four candidate liquids as the working fluids, exploring the thermal performance of a silicon CPV cell array in a liquid immersion prototype receiver, have been performed. Simulation results show that the direct-immersion cooling approach can maintain low and uniform cell temperature in the designed liquid immersion receiver. The fluid inlet velocity and flow mode, along with the fluid thermal properties, all have a significant influence on the cell array temperature. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据