4.7 Review

Parotid secretory granules: Crossroads of secretory pathways and protein storage

期刊

JOURNAL OF DENTAL RESEARCH
卷 84, 期 6, 页码 500-509

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/154405910508400604

关键词

secretory granules; regulated secretion; amylase; parotid; saliva

资金

  1. NIDCR NIH HHS [R01 DE012205-05, R01 DE012205, R01 DE012205-04A1, R01 DE 12205] Funding Source: Medline

向作者/读者索取更多资源

Saliva plays an important role in digestion, host defense, and lubrication. The parotid gland contributes a variety of secretory proteins-including amylase, proline-rich proteins, and parotid secretory protein (PSP)-to these functions. The regulated secretion of salivary proteins ensures the availability of the correct mix of salivary proteins when needed. In addition, the major salivary glands are targets for gene therapy protocols aimed at targeting therapeutic proteins either to the oral cavity or to circulation. To be successful, such protocols must be based on a solid understanding of protein trafficking in salivary gland cells. In this paper, model systems available to study the secretion of salivary proteins are reviewed. Parotid secretory proteins are stored in large dense-core secretory granules that undergo stimulated secretion in response to extracellular stimulation. Secretory proteins that are not stored in large secretory granules are secreted by either the minor regulated secretory pathway, constitutive secretory pathways ( apical or basolateral), or the constitutive-like secretory pathway. It is proposed that the maturing secretory granules act as a distribution center for secretory proteins in salivary acinar cells. Protein distribution or sorting is thought to involve their selective retention during secretory granule maturation. Unlike regulated secretory proteins in other cell types, salivary proteins do not exhibit calcium-induced aggregation. Instead, sulfated proteoglycans play a role in the storage of secretory proteins in parotid acinar cells. This work suggests that unique sorting and retention mechanisms are responsible for the distribution of secretory proteins to different secretory pathways from the maturing secretory granules in parotid acinar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据