4.8 Article

Quantum transport through a DNA wire in a dissipative environment

向作者/读者索取更多资源

Electronic transport through DNA wires in the presence of a strong dissipative environment is investigated. We show that new bath-induced electronic states are formed within the band gap. These states show up in the linear conductance spectrum as a temperature dependent background and lead to a crossover from tunneling to thermal activated behavior with increasing temperature. Depending on the strength of the electron-bath coupling, the conductance at the Fermi level can show a weak exponential or even an algebraic length dependence. Our results suggest a new environmentally induced transport mechanism. This might be relevant for the understanding of molecular conduction experiments in liquid solution, such as those recently performed on poly(GC) oligomers in a water buffer (B. Xu et al., Nano Lett. 2004, 4, 1105).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据