4.2 Article Proceedings Paper

Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury

期刊

NEUROPEPTIDES
卷 39, 期 3, 页码 191-199

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.npep.2005.01.001

关键词

galanin; g-protein coupled receptors; dorsal root ganglia; spinal cord; pain; regeneration

资金

  1. Medical Research Council [G0300028] Funding Source: Medline
  2. Medical Research Council [G0300028] Funding Source: researchfish
  3. MRC [G0300028] Funding Source: UKRI

向作者/读者索取更多资源

The neuropeptide galanin is present at high levels within the dorsal root ganglia (DRG) and spinal cord during development and after peripheral nerve damage in the adult. This pattern of expression suggests that it may play a role in the adaptive response of the peripheral nervous system (PNS) to injury. Several experimental paradigms have demonstrated that galanin modulates pain transmission, particularly after nerve injury. In our laboratory we have used a transgenic approach to further elucidate the functions of galanin within the somatosensory system. We have generated mice which over-express galanin (either inducibly after nerve injury, or constitutively), and knock-out (KO) mice, in which galanin is absent in all cells, throughout development and in the adult. Analysis of the nociceptive behaviour of the galanin over-expressing animals, before and after nerve injury, supports the view that galanin is an inhibitory neuromodulator of spinal cord transmission. In apparent contradiction to these findings, galanin KO animals fail to develop allodynia and hyperalgesia after nerve injury. However, further studies have shown that galanin is critical for the developmental survival of a subset of small diameter, unmyelinated sensory neurons that are likely to be nociceptors. This finding may well explain the lack of neuropathic pain-like behaviour after injury in the KO animals. Furthermore, the developmental survival role played by galanin is recapitulated in the adult where the peptide is required for optimal neuronal regeneration after injury, and in the hippocampus where it plays a neuroprotective role after excitotoxic injury. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据