4.2 Article

Melting evolution and diffusion behavior of vanadium nanoparticles

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 45, 期 4, 页码 547-554

出版社

SPRINGER
DOI: 10.1140/epjb/e2005-00210-8

关键词

-

向作者/读者索取更多资源

Molecular dynamics calculations have been performed to study the melting evolution, atomic diffusion and vibrational behavior of bcc metal vanadium nanoparticles with the number of atoms ranging from 537 to 28475 ( diameters around 2 - 9 nm). The interactions between atoms are described using an analytic embedded-atom method. The obtained results reveal that the melting temperatures of nanoparticles are inversely proportional to the reciprocal of the nanoparticle size, and are in good agreement with the predictions of the thermodynamic liquid-drop model. The melting process can be described as occurring in two stages, firstly the stepwise premelting of the surface layer with a thickness of 2 - 3 times the perfect lattice constant, and then the abrupt overall melting of the whole cluster. The heats of fusion of nanoparticles are also inversely proportional to the reciprocal of the nanoparticle size. The diffusion is mainly localized to the surface layer at low temperatures and increases with the reduction of nanoparticle size, with the temperature being held constant. The radial mean square vibration amplitude ( RMSVA) is developed to study the anharmonic effect on surface shells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据